
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 21 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

The Journal of Adhesion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453635

Closed Form Nonlinear Analysis of the Peninsula Blister Test
Dewei Xua; Kenneth M. Liechtia; Thibault H. de Lumley-Woodyeara

a Research Center for the Mechanics of Solids Structures and Materials, Department of Aerospace
Engineering and Engineering Mechanics, University of Texas at Austin, Austin, Texas, USA

To cite this Article Xu, Dewei , Liechti, Kenneth M. and de Lumley-Woodyear, Thibault H.(2006) 'Closed Form Nonlinear
Analysis of the Peninsula Blister Test', The Journal of Adhesion, 82: 8, 831 — 866
To link to this Article: DOI: 10.1080/00218460600822922
URL: http://dx.doi.org/10.1080/00218460600822922

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453635
http://dx.doi.org/10.1080/00218460600822922
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Closed Form Nonlinear Analysis of the Peninsula
Blister Test

Dewei Xu
Kenneth M. Liechti
Thibault H. de Lumley-Woodyear
Research Center for the Mechanics of Solids Structures and Materials,
Department of Aerospace Engineering and Engineering Mechanics,
University of Texas at Austin, Austin, Texas, USA

Previous work by Liechti and Shirani [1] has shown that, among the family
of blister tests, the peninsula blister test is the best because of low plastic
deformation. This work further examines the peninsula blister test, derives
new solutions, and accounts for residual stresses. An approximate nonlinear
analysis of the peninsula blister based on the minimum potential energy method
was developed for extracting the toughness of thin films bonded to stiff sub-
strates. This analysis, which is easily applied to specimens with finite
dimensions, was validated against an exact analytical solution for plane strain
and a three-dimensional finite element analysis. Experiments with a film
adhesive, Hysol EA 96961, were conducted. Bulge tests were used to obtain the
elastic properties of and the residual stresses in the film. The fracture experi-
ments were used to check the solutions and determine the toughness of the bond
between the adhesive and aluminum. In both experiments, in addition to the
usual measurements of volume and pressure, the deflection of the specimen
was measured using shadow moiré. This allowed the residual stresses to be
determined and their effects on both membrane deflection and energy release
rate to be examined.
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1. INTRODUCTION

Thin film structures appear in a wide variety of applications such as
functional and protective coatings, multilayer structures, and thin
film=substrate structures in biological membranes, nanostructures,
microelectronic devices and packages, reaction product layers, and
adhesive joints. Interest in the measurement of thin film=substrate
adhesion has increased with the development of microelectronic
devices. A number of specialized techniques have been developed to
measure adhesion in thin film=substrate structures where the thin
films are sufficiently stiff with a relatively brittle interface. For
example, in metal, oxide, or nitride films the scratch [2–5], peel and
pull [6–8], four-point bending [9], stressed overlayers [10,11], inden-
tation [12–14], and nanoindentation [15,16] tests were developed.
A recent review [17] concluded that nanoindentation and stressed
overlayers are by far the most common and reliable of these testing
techniques.

For systems where one or both of the materials being joined are flex-
ible, soft, and thin, plastic dissipation can play a key role in delami-
nation. Peel tests [18,19] have been used for a long time to study the
strength of adhesion of multilayer structures. However, they can pro-
duce a lot of plastic deformation, which may mask the determination
of the actual fracture energy. Elastoplastic analyses [20–23] were con-
ducted to account for the plastic dissipation. Pressurized blister tests
were developed as an alternative, with the promise of lower plastic dis-
sipation. The first blister test [24] was used to measure the adhesion of
thick organic coatings to metals. A point-loaded configuration [25] was
developed where a central point load was applied to the delaminating
film, which resulted in outward radial growth of the crack. The work of
adhesion was deduced by measuring the work done by the applied
load. This configuration has recently been reintroduced in the form
of the shaft-loaded blister [26]. A pressurized version of the blister test
was first suggested by Williams [27] where pressurized circular blister
specimens were used to establish that the adhesive fracture energy,
represented by the critical energy release rate, is a system parameter
that is independent of geometry. Pressurized circular blister speci-
mens were used to explore [28] some aspects of surface interactions
of polymers in thin film adhesion applications. Gent and Lewandowski
[29] used membrane analysis to determine the onset and subsequent
propagation of circular blisters under large deflections. Under press-
ure control, circular blister specimens are inherently unstable; i.e.,
once a crack nucleates it will continue to grow. This instability
can be avoided by conducting experiments under volume control. This
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concept was used to advantage in high-temperature experiments
[30,31] by using a fixed amount of the pressurizing medium.

Unfortunately, the critical pressure for crack initiation could not
always be found because of bursting of thin, well-adhering delaminat-
ing layers [32]. As a result, the constrained blister test was proposed
[33,34] to cope with this problem. The energy release rate can be selec-
ted by adjusting the height of the constraint, which enables the critical
pressure and stress in the film to be deduced. The island blister [35]
test was developed for the same reason. The drawback of the island
blister test is that, under pressure control, the energy release rate
increases with debond radius without bound, which induces unstable
crack growth. To overcome this problem while maintaining a high
energy release rate, which is the prerequisite for thin, well-adhering
delaminating layers, Dillard and Bao [36] developed the peninsula
blister test and showed that a constant energy release rate during
debonding can be made to be very high.

The best configuration among all the blister tests is the one in which
the amount of plastic dissipation is minimized so that the intrinsic
adhesive fracture energy is extracted precisely. Liechti and Shirani
[1] used nonlinear Von Karman plate theory to compare the circular,
island, and peninsula blister specimens in a consistent manner. They
showed that large-scale yielding occurs in all configurations except
the case of relatively thick peninsula blister specimens. Lai and Dillard
[37] introduced a fracture efficiency parameter to compare the abilities
of different blister geometries to induce debonding without causing rup-
ture of the film or yielding. They defined this parameter as the ratio
between the energy release rate and the square of the maximum stress.
If this parameter is to be at all useful for optimizing the specimen
dimensions for a given blister geometry, it should take into account
the extent of yielding within the film, rather than just the maximum
value of stress. For example, large stresses might be produced and con-
fined to a small region such as the vicinity of the crack front. In this
case, the plastic zone is small, and an elastic analysis of the blister
remains valid to compute the energy release rate. To account for global
plastic dissipation within thin film blistering, Shirani and Liechti [38]
adopted the fracture process zone model approach, proposed by Needle-
man [39,40]. This approach consists of attributing a traction-separation
law to the interface and allows the plastic dissipation and adhesive
fracture energy to be distinguished. Shirani and Liechti [41] showed
that the amount of plastic dissipation was large for the circular blister
specimen, whereas it was limited to a smaller region in the case of the
peninsula blister. As a result, the latter configuration allows thin film
adhesion to be determined from relatively simple elastic analyses.
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The analyses just described involved plasticity and highly nonlinear
traction-separation laws in sophisticated finite element analyses.
They showed that an elastic analysis of the peninsula blister would
suffice. Nonetheless, nonlinearities do arise when large deflections
are needed to cause delamination. The purpose of the present study
was to develop an accurate nonlinear analysis whose results are easily
accessible to all users of the peninsula blister test.

2. EXPERIMENTAL

In this section, we describe the specimen fabrication and the appar-
atus used to conduct the bulge and peninsula blister experiments.
The former was conducted after the latter and was used to determine
the elastic properties of the film and the residual stress. The pressur-
ized peninsula blister test was used to determine the adhesion of the
film adhesive to an aluminum substrate.

2.1. Specimen Fabrication

The peninsula blister specimen is a rectangular blister configuration
where the film is clamped along all four edges and bonded along a
narrow long central strip, the ‘‘peninsula’’ (Figure 1). The widths of
the peninsula and the specimen are 2b and 2c, respectively, and l0

is the initial debond length. It consists of three regions, region 2
and two regions 1, which together are called the ‘‘ocean.’’ A Hysol
EA 9696 film adhesive1 (Henkel Loctite Corp., Rocky Hill, CT,
USA) was bonded to an aluminum (6061-T6) substrate, whose
surface was phosphoric acid anodized, and then coated with the
BR1 127 (Cytec Fiberite, Havre de grace, MD, USA), a corrosion
inhibiting primer that was cured at 100�C for 60 mins. A 25.4-mm
cellophane tape (PCT-2A, Measurements group, Raleigh, NC, USA)
was attached to the adhesive film with the nonstick surface facing
the aluminum in order to provide a release layer and establish the
initial debond length (region 2). The substrate was mounted on a
Teflon1 block that had been machined to form a mask in the ocean
region. The Hysol EA 9696 film was deposited on both the treated
substrate and Teflon mask and cured at 100�C for 90 min in an evac-
uated oven to reduce the formation of air bubbles. After curing the
specimen, a thin layer of white paint was sprayed on the top of the
adhesive for shadow moiré measurements.

1The authors gratefully acknowledge Loctite Aerospace for providing the EA 9696
gratis.
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2.2. Apparatus

A schematic view of the apparatus used in this study is shown in
Figure 2. It consisted of a pressurization device along with data acqui-
sition equipment and the components for shadow moiré, which was
used to measure the deflected shape of the pressurized film. The speci-
men was placed between two circular plates and sealed in a manifold
with silicone glue. The pressurizing medium was deionized water, and
a syringe pump was used to control the flow rate. The pressure was
measured with a pressure transducer (Sensotec Z=0761-09ZG,
Honeywell Sensotec, Columbus, OH, USA) with a capacity of
344.7 kPa. It was connected to a data acquisition board (National
Instruments PCI-MIO-16XE-50, National Instruments, Austin, TX,

FIGURE 1 (a) Geometry and (b) mounting of the peninsula blister specimen.
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USA), which was installed in a PC with LabVIEW software. The blis-
ter shape was measured using shadow moiré in which a master grat-
ing of 250 lines per inch was used, providing a half fringe resolution of
50.8 mm.

2.3. Bulge Test

The bulge test was conducted following the blister test to ensure that the
material properties of the film adhesive were determined from the
same material that was used in the blister test. The Young’s modulus,
E, and the residual stress, r0, can be extracted from the pressure-
central deflection ðq�w0Þ response by fitting (see Appendix B)

q ¼ 2hr0

c2
w0 þ

8Eh

6c4ð1� n2Þw
3
0 ð1Þ

FIGURE 2 Schematic view of the apparatus.
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to the measured response. It can be seen that the initial slope of the
response can be used to determine the residual stress in the film. The
nonlinear term, on the other hand, yields information about Young’s
modulus. Poisson’s ratio, n, can be obtained [42] by conducting bulge
tests on square and rectangular specimens. In this study, Poisson’s ratio
was set to 0.3 because its effect is small. The largest source of error in
extracting Young’s modulus is the uncertainty in specimen width,
which enters as the fourth power. In the present study, fortunately,
the dimension was readily determined as the width of the substrate.

Figure 3 shows the pressure-central deflection response of the pres-
surized film and two consistent loading cycles. The Young’s modulus
of, and the residual stress in, the film were 1.78� 0.02 GPa and
5.70 � 0.03 MPa, respectively, based on Poisson’s ratio of 0.30. The
uncertainties were based on the uncertainty of measurements of the
width of the substrate. Young’s modulus of epoxy adhesives ranges
from 1.0 to 3.0 GPa depending on curing temperature, pressure,
composition, curing agent, modifiers, etc. The residual stresses were
mainly caused by thermal contraction and can be estimated by

rR ¼ Eðaf � asÞ
1� n

ðTc � TaÞ; ð2Þ

FIGURE 3 Measured pressure–normalized deflection response for a Hysol
EA 9696 bulge specimen with an aspect ratio of 3.4.
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where Tc is the stress-free cure temperature (100�C), Ta is the ambient
temperature (25�C), and af and as are the coefficients of thermal
expansion of the film and the substrate, respectively. For the adhesive
film used in this study, af ranges from 50 to 60 mm=m=�C whereas as for
the aluminum substrate is about 24mm=m=�C. The resulting residual
stress ranges from 4.96 MPa to 6.86 MPa, so the measured value
5.70 MPa of the residual stress seems to be reasonable.

2.4. The Peninsula Blister Test

After the peninsula specimen was fabricated, it was placed between
two circular plates and sealed by silicone glue (Figure 1b). Then
the assembly was fixed in the holder so that it could be pressurized.
The initial crack length was set at an aspect ratio l0=2c of 1.5. The
pumping rate was 5 ml=h, and Figure 4 shows typical pressure and
debond length histories. Initially, the blister behaved as a membrane
until debonding developed under increasing pressure. When the
debonding initiated from the tip of the peninsula and the cellophane
tape, which essentially formed a blunt crack, the pressure history
reached a noticeable maximum before dropping to a nearly constant
value. During this time the crack accelerated. However, once the

FIGURE 4 Typical pressure and debond length histories during a peninsula
blister test with Hysol EA 9696 bonded to Al 6061-T6.
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pressure became constant, the crack speed became steady. This
constant pressure level was then used to determine the energy
release rate at the steady state crack speed. The pressure history
was slightly different (Figure 5) when the specimen was unloaded
from the steady state response and then reloaded. There was an
obvious discontinuity associated with the initiation of the crack,
followed by an increase in pressure until the crack sensed the
presence of the boundary. The rise in pressure could be associated
with resistance curve effects. However, the increase in pressure
was less than 2%.

3. ANALYSES

In this section, we present analyses of the peninsula blister specimen.
Its geometry is presented first, followed by the analyses of a fully
clamped membrane and the effects of residual stresses. These results
are then used to derive the energy release rate.

FIGURE 5 Pressure and debond length histories during a peninsula blister
test with Hysol EA 9696 bonded to Al 6061-T6, starting from a sharp initial
debond.
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3.1. The Peninsula Blister Specimen

As mentioned, the peninsula specimen consists of three separate
regions. Each one can be thought of as a membrane clamped on three
boundaries. The fourth boundary of each membrane is in the tran-
sition region identified by the delamination front on the peninsula.
Debonding starts at the peninsula tip and propagates along the penin-
sula. In so doing, region 2 becomes larger at the expense of regions 1
on either side of the peninsula, with concomitant changes in stresses,
strains, and potential energy. As debonding progresses, the size of the
crack front remains constant and equal to the width of the peninsula.

3.2. Fully Clamped Membrane

The first step that was taken was to examine the response of fully
clamped rectangular membranes (Figure 6) analytically. A closed-form
solution completely satisfying the equilibrium equations and bound-
ary conditions for nonlinear rectangular membranes is not possible.
Thus, either an approximate analytical solution or a numerical sol-
ution can be pursued.

Membrane behavior arises when the deflection, w, is much greater
than the thickness, h. If u and v are the in-plane displacements of the
membrane associated with the x and y directions, respectively, the
strains in the membrane are given by

ex ¼
@u

@x
þ 1

2

@w

@x

� �2

;

ey ¼
@v

@y
þ 1

2

@w

@y

� �2

;

ð3Þ

FIGURE 6 Rectangular membrane geometry.
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and

cxy ¼
@u

@y
þ @v

@x
þ @w

@x

@w

@y
:

The nonlinear terms in these expressions arise from the fact that the
deflection of the membrane in the z direction is large. In the present
study, an energy minimization approach was used where an approxi-
mate displacement field is employed. The most common approximate
displacement field is the first term in the Fourier expansion of the
actual deflection [43]. Such an approach was followed in analyses of
the bulge test [42,43]. In the rectangular bulge tests that were conduc-
ted as a part of the present study, shadow moiré measurements of the
film deflection verified that the slope near both the shorter clamped
and at the longer clamped boundaries was finite. To determine the
energy release rate, the whole deflection field is required. Such a deflec-
tion field cannot be properly represented by the first-order term used in
previous analyses. Accordingly, we considered the following basis func-
tions to describe the displacement field for a rectangular membrane

w ¼ 1� x

a

� �2
� �

1� y

c

� �2
� �XN¼5

i¼1

wi�1
x

a

� �2ði�1Þ
; ð4aÞ

u ¼ u0
x

a

� �
1� x

a

� �2
� �

1� y

c

� �2
� �

; ð4bÞ

and

v ¼ v0
y

c

� �
1� x

a

� �2
� �

1� y

c

� �2
� �

: ð4cÞ

These functions vanish at the edges, thereby satisfying the boundary
conditions imposed by clamped edges. Note that @w=@y 6¼ 0 at y ¼ �c
and @w=@x 6¼ 0 at x ¼ �a corresponding to standard membrane beha-
vior. This set of functions satisfies symmetry conditions: u and v are
odd functions in x and y, respectively, and w is an even function in x
and y. The first parenthesis term in w was taken to be a function of x
only so as to account for the rectangular shape.

The parameters w0;w1;w2;w3;w4 and u0; v0 were determined by
minimizing the potential energy, P, of the system through

@P
@w0

¼ 0;
@P
@w1

¼ 0;
@P
@w2

¼ 0;
@P
@w3

¼ 0;
@P
@w4

¼ 0;
@P
@u0
¼ 0;

@P
@v0
¼ 0:

ð5Þ
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The potential energy is given by

P ¼ U �W; ð6Þ

where U is the strain energy of the film.

U ¼ Eh

2ð1� n2Þ

ZZ
e2
x þ e2

y þ 2nexey þ
1

2
ð1� nÞc2

xy

� �
dx dy; ð7Þ

where E, n, and h are the Young’s modulus, Poisson’s ratio, and the
thickness of the film, respectively.

The external work is given by

W ¼
ZZ

qw dx dy; ð8Þ

where q is the uniform pressure on the film.
Minimization of the potential energy with respect to the undeter-

mined parameters leads to a set of seven simultaneous nonlinear
equations in w0;w1;w2;w3;w4 and u0; v0 that were solved using
Mathematica1.

The seven unknowns are given by

w0 ¼ f1 v;
a

c

� � qc4

Eh

� �1=3

;

w1 ¼ f2 v;
a

c

� � qc4

Eh

� �1=3

;

w2 ¼ f3 v;
a

c

� � qc4

Eh

� �1=3

;

w3 ¼ f4 v;
a

c

� � qc4

Eh

� �1=3

;

w4 ¼ f5 v;
a

c

� � qc4

Eh

� �1=3

;

u0 ¼ f6 v;
a

c

� � q2c5

E2h2

� �1=3

:

ð9Þ

and

v0 ¼ f7 v;
a

c

� � q2c5

E2h2

� �1=3

:

For an infinitely long membrane, the deflection will approach the
plane strain solution given in Appendix A. In this case, an exact

842 D. Xu et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
4
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



solution for the membrane deflection and inplane displacement can be
derived as

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6qc4ð1� n2Þ

8hE

3

r
1� y

c

� �2
� �

ð10aÞ

and

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þ2q2c5

6h2E2

3

s
y

c

� �
1� y

c

� �2
� �

: ð10bÞ

The functions f1ðn;a=cÞ and f7ðn;a=cÞ in Eq. 9, will converge toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1� n2Þ=83

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þ2=63

q
, respectively, when the aspect ratio

a=c of the rectangle becomes large enough.
From Eq. (4), it can be seen that the dominant term is the one

involving w0. As a result, with reference to Eq. (9), it is instructive
to examine the behavior (Figure 7) of the function f1ðn;a=cÞ. It can
be seen that the deflection of a membrane increases rapidly for aspect
ratios in the range 1 � a=c � 2, but once the aspect ratio exceeds 3, the
deflection is almost independent of the aspect ratio. The deflection is a
weak function of Poisson’s ratio. In fact, when the aspect ratio is larger

FIGURE 7 Variation of f1 with aspect and Poisson’s ratio.
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than 2, the deviation from the plane strain solution is less than 3%.
For each value of Poisson’s ratio, the asymptote of f1ðn;a=cÞ was larger
than the plane strain solution. The reason for this is that for a rec-
tangular membrane with a finite aspect ratio where the deflection var-
ies with x, the maximum deflection, which f1ðn;a=cÞ contributes to,
should be larger than the plane strain solution to maintain the same
energy. In subsequent analyses, we used the plane strain assumption
when the aspect ratio was greater than 2.

Some remarks about the selection of the deflection functions are in
order. First, it is indeed sufficient to select polynomials in x only in the
series of the deflection function w. If polynomials in y are included,
there is only a small effect. For example, compare the two sets of
deflection functions

w ¼ w0 þw1
x

a

� �2
� �

1� x

a

� �2
� �

1� y

c

� �2
� �

; ð11aÞ

or

w ¼ w0 þw1
x

a

� �2
þw2

y

c

� �2
� �

1� x

a

� �2
� �

1� y

c

� �2
� �

ð11bÞ

and

w ¼ w0 þw1
x

a

� �2
þw2

x

a

� �4
þw3

x

a

� �6
þw4

x

a

� �8
� �

� 1� x

a

� �2
� �

1� y

c

� �2
� �

; ð12aÞ

or

w ¼ w0 þw1
x

a

� �2
þw2

x

a

� �4
þw3

x

a

� �6
þw4

x

a

� �8
þw5

y

c

� �2
� �

� 1� x

a

� �2
� �2

1� y

c

� �2
� �

: ð12bÞ

Figure 8a is a comparison of f1 as a function of aspect ratio with [Eq.
(11b)] or without [Eq. (11a)] y terms, and Figure 8b is a similar com-
parison based on Eq. (12). Notice that y terms did not have much of
an effect on f1. The reason for this can be seen from the plane strain
solution, where the term 1� ðy=cÞ2 is sufficient to characterize the
deflection in the y direction.

Second, five terms in the series in Eq. (4a) are the fewest that are
required to provide a satisfactory solution. Figure 9a shows the
comparison of f1 as a function of aspect ratio when the number
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FIGURE 8 Variation of f1 with aspect ratio with or without y terms in (a) Eqs.
(9b) or (9a) and (b) Eqs. (10b) or (10a) (n ¼ 0:3).
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of terms in the series varies from two to ten terms; i.e., 2 � N � 10. It
is clear that each series approaches a different asymptote. However, as
the number of terms increases, there is a convergence of asymptotic
values with odd-numbered series approaching from above and

FIGURE 9 (a) Variation of f1 with aspect ratio and number of degrees of free-
dom, and (b) the deflection along y ¼ 0 for a membrane with an aspect ratio of
3.4 and n ¼ 0:3.
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even-numbered series approaching from below. Notice that there were
perturbations in f1 as N � 9. The reason for this is that the error from
the numerical analysis played a key role. If N is even, there will be a
prominent maximum before approaching the asymptote. Vlassak and
Nix [42], who used Eq. (11b), had noticed this feature and obtained a
hump in f1 for a=c ¼ 2. Actually, as more terms are involved in the ser-
ies, the prominent maximum becomes weaker and weaker, and finally
disappears when N � 10. If N is odd, there will be a transition stage in
f1 before approaching the asymptote. Again, this transition stage dis-
appeared when N � 9. The deviations of asymptotes as a function of
the number of terms in the series are compared with the asymptote
for ten terms in Table 1. When five terms were chosen, the deviation
was less than 2%. Figure 9b shows the total deflection of the mem-
brane along y ¼ 0 for 2 � N � 7. Note that when N � 5, the membrane
shape did not change much. For consideration of both the convergence
of f1 and the whole deflection field of interest, the selection of five
terms was considered to be sufficient.

2.3. The Influence of Residual Stresses on the Deflection
of a Membrane

Until now, only membranes without residual stresses have been con-
sidered. The presence of such stresses, rR

x and rR
y , can alter the deflec-

tion behavior of a membrane and the strain energy release rate
considerably [44]. The residual stresses can be included in the
strain-displacement equations. That is,

ex ¼
@u

@x
þ 1

2

@w

@x

� �2

þ
rR

x � nrR
y

E
;

ey ¼
@v

@y
þ 1

2

@w

@y

� �2

þ
rR

y � vrR
x

E
;

ð13Þ

and

cxy ¼
@u

@y
þ @v

@x
þ @w

@x

@w

@y
:

TABLE 1 Comparison of Asymptotes with Different Numbers of Terms

Parameter 2 3 4 5 6 7 8 9 10

a=c ¼ 50 0.847 0.958 0.889 0.939 0.902 0.931 0.909 0.925 0.922
Deviation (%) �8.13 3.83 �3.57 1.86 �2.18 0.99 �1.45 0.35 0
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In thin film applications, the residual stresses might be due to thermal
expansion effects, epitaxial mismatch, phase transformation, chemical
reaction, moisture absorption, etc. In all these situations, the residual
stresses can be considered to be equi-biaxial. As a result, Eq. (13)
becomes

ex ¼
@u

@x
þ 1

2

@w

@x

� �2

þ ð1� nÞrR

E
;

ey ¼
@v

@y
þ 1

2

@w

@y

� �2

þð1� vÞrR

E
;

ð14Þ

and

cxy ¼
@u

@y
þ @v

@x
þ @w

@x

@w

@y
;

where we have taken rR ¼ rR
x ¼ rR

y . If the residual stresses are known,
w0;w1;w2;w3;w4 and u0; v0 can be determined as before. In the work
of de Lumley-Woodyear [45], numerical solutions were developed
based on the same energy method and using finite element software
(ABAQUS1). However, the residual stresses were allowed to differ
in the x and y directions. This led to a lack of uniqueness in the deter-
mination of the residual stresses. On the other hand, if they are the
same in each direction, they can be uniquely extracted from the data.
For the plane strain assumption (Appendix B), an exact solution can
be obtained for the deflection w and in-plane displacement v:

w ¼ qc2

2hry
1� y

c

� �2
� �

ð15aÞ

and

v ¼ 1� n2

E
ðry � rRÞy� 1

6

q2y3

ðhryÞ2
; ð15bÞ

where

ry ¼
1

3
rc

rR

rc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
27þ 2

rR

rc

� �3

þ3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 4

rR

rc

� �3
s0

@
1
A3

vuuut
0
B@

þ ðrR=rcÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2

�
27þ 2ðrR=rcÞ3 þ 3

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27þ 4ðrR=rcÞ3
q �

3

r
1
CCA ð15cÞ
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and

rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2c2

6h2ð1� v2Þ
3

s
ð15dÞ

is the stress under plane strain conditions.
In the present study, the residual stresses were caused by thermal

contraction during curing. As a result, we assumed that the residual
stress in x direction was the same as that in the y direction.
Figure 10a shows the effects of the equi-biaxial residual stress on
the maximum deflection of the membrane under constant uniform
pressure. The quantities w0, and r0 are, respectively, the maximum
deflection and stress in the blister film in the absence of the residual
stresses, and w00 is the maximum deflection in the presence of residual
stresses. Note that the equi-biaxial residual stress can be compressive
and limited by the buckling stress in the film. In the present study, the
specimen dimensions gave rise to a buckling stress of approximately
0:6r0, establishing the lower limit of the abscissa in Figure 10a. It is
clear that when the equi-biaxial residual stress is the same as r0,
the maximum deflection decreases by 31%.

2.3. Energy Release Rate

Griffith [46] approached the fracture of an ideally brittle material from
a thermodynamic point of view where the energy stored in a cracked
body could be converted into surface energy as the crack grew. Irwin
[47] developed the current version of this concept by introducing the
energy release rate, G, which is defined as the rate of change in poten-
tial energy with crack area. Williams [27] discussed the link between
fracture and adhesion in pressurized blister tests using a continuum
interpretation. Our approach here is based on the energy release rate
concept where

GdA ¼ dW � dU � dD: ð16Þ

The quantity dA is the change of the debond area during crack propa-
gation. The associated changes in the work done by the pressure, the
strain energy in the blister, and the plastic and=or viscoelastic dissi-
pation are, respectively, dW, dU, and dD. The possibility of viscoelastic
dissipation is not considered here because the chosen materials were
in their glassy state. Shirani and Liechti [38] showed that in the pen-
insula blister specimen, the amount of plastic dissipation was limited
to a small region in the vicinity of the crack front, so this part can be
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neglected. Then, under these conditions, one can write

GdA ¼ dW � dU: ð17Þ

Recalling the potential energy from Eq. (6), the expression of the

FIGURE 10 Effect of residual stress on (a) the maximum deflection and (b)
the energy release rate.
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energy release rate is given by

G ¼ � @P
@A

ð18Þ

For a peninsula blister specimen (Figure 1a), region 1 always satis-
fies the plane strain assumption (a=c � 2Þ whereas region 2 is, at least
initially, a finite membrane. In spite of this, we verify that it is appro-
priate to determine the energy release rate based on the plane strain
assumption even for l0=2c � 1:5.

Based on the plane strain assumption (ex ¼ 0), the strain energy per
unit length of a membrane is given by

U0 ¼ Eh

2ð1� v2Þ

Z c

�c

e2
ydy; ð19Þ

where, from Appendix A,

ey ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þ2q2c2

6h2E2

3

s
: ð20Þ

The external work per unit length is given by

W0 ¼
Z

qwdy: ð21Þ

The total potential energy per unit length is obtained by

p ¼ Eh

2ð1� n2Þ

Z c

�c

e2
ydy�

Z c

�c

qwdy: ð22Þ

By substituting Eqs. (10a) and (21a) into Eq. (22) and letting
n ¼ 0:3,

p ¼ �0:8804

ffiffiffiffiffiffiffiffiffi
q4c7

Eh

3

r
: ð23Þ

For region 1, by substituting

c ¼ c� b=2 ð24Þ
into Eq. (23),

p1 ¼ �0:1746

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4ðc� bÞ7

Eh

3

s
: ð25Þ

For region 2 based on the plane strain assumption,

p2 ¼ �0:8804

ffiffiffiffiffiffiffiffiffi
q4c7

Eh

3

r
: ð26Þ
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In situations where region 2 is a membrane with a finite aspect ratio,

P2 ¼
Eh

2ð1� n2Þ

Z a

�a

Z c

�c

h
e2
x þ e2

y þ 2nexey þ
1

2
ð1� nÞc2

xy

i
dx dy

�
Z a

�a

Z c

�c

qw dx dy ð27Þ

By substituting Eqs. (3) and (4a) into Eq. (27), the dimensionless total
potential energy yields

P2 ¼
P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q4c10=Eh3
p ¼ f8 n;

a

c

� �
: ð28Þ

From Eq. (26), the dimensionless potential energy for a plane strain
membrane of length 2a is given by

Pp ¼
Ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q4c10=Eh3
p ¼ 2apffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q4c10=Eh3
p ¼ �1:7608

a

c
: ð29Þ

As a result, the dimensionless total potential energy in Eq. (28) should
approach �1:7608ða=cÞ for sufficiently long membranes.

Figure 11 shows the change of the dimensionless total potential
energy, f8, with aspect ratio, which can be approximated by f8 ¼
0:6678� 1:7186ða=cÞ for ða=cÞ > 1:5. Comparing f8 with the quantity
�1:7608ða=cÞ from the plane strain solution, it can be seen that, if
the aspect ratio is larger than 1.5, the total potential energy calculated
from the plane strain solution is accurate, and the deviation is less
than 3%. As a result, in the following determination of the energy
release rate, the total potential energy resulting from the plane strain
solution for region 2 is appropriate for l0=2c�1:5.

The total potential energy of a specimen with the debond length, l,
and the total length, L, is given by

P ¼ p2lþ 2p1ðL� lÞ: ð30Þ

The energy release rate is obtained by

G¼�@P
@A
¼� 1

2b

@P
@l
¼ 1

2b
ð2p1�p2Þ¼

1

b

ffiffiffiffiffiffiffi
q4

Eh

3

r h
0:4402c7=3�0:1746ðc�bÞ7=3

i
:

ð31Þ

In the geometry of our specimen, where b ¼ ð1=8Þc, Eq. (31) simplifies to

G ¼ 2:4987

ffiffiffiffiffiffiffiffiffi
q4c4

Eh

3

r
: ð32Þ
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2.4. Effects of Residual Stresses for Energy Release Rate

We have shown how the residual stresses affect the deflection of a
membrane. The effects of residual stresses on energy release rate in
circular and island blister tests were considered in previous studies
[32,48]. It was shown that the effects of residual stresses on energy
release rate were significant. In the following, the effects of residual
stresses on the energy release rate of the peninsula blister test are
examined.

The strain energy in the membrane per unit length is given by

U0 ¼ Eh

2ð1� v2Þ

Z c

�c

ðe2
x þ e2

y þ 2nexeyÞdy ð33Þ

The total strains in the membrane are made up of the mechanical, eM,
and residual strains, eR. For a plane strain membrane, this means
that ey ¼ eM

y þ eR and ex ¼ eR. As a result, for a rectangular membrane
with width 2c per unit length, Eq. (33) becomes

U0 ¼ Eh

2ð1� v2Þ

Z c

�c

2ð1þ nÞðeRÞ2dyþ
Z c

�c

2ð1þ nÞeReM
y dyþ

Z c

�c

ðeM
y Þ

2dy

� �
:

ð34aÞ

FIGURE 11 Variation of f8 with aspect ratio (n ¼ 0:3).
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The first integral in Eq. (34a) is the strain energy stored by the
residual stresses. The second integral corresponds to the work done
by the residual stresses through the displacements that occur during
pressurization. The third integral is due to the work done by the mem-
brane stresses acting through the displacement resulting from the
pressure. In preparation for considering the potential energy due to
the pressure, the net strain energy per unit length is

U0 ¼ Eh

2ð1� v2Þ

Z c

�c

2ð1þ nÞeReM
y dyþ

Z c

�c

ðeM
y Þ

2dy

� �
: ð34bÞ

The total potential energy of a membrane per unit length is obtained
from

p ¼ Eh

2ð1� v2Þ

Z c

�c

2ð1þ nÞeReM
y dyþ

Z c

�c

ðeM
y Þ

2dy

� �
�
Z c

�c

qw dy ð34cÞ

This result is derived under the tacit assumption that the strain
energy in the substrate is neglected because the substrate is much stif-
fer than the film.

For a sufficiently long region 2 in a peninsula blister specimen, the
deflection and in-plane strain are given by (Appendix B)

w ¼ qc2

2hry1
1� y

c

� �2
� �

; ð35aÞ

eM
y ¼

1� n2

E
ðry2 � rRÞ ð35bÞ

and

eR ¼ ð1� nÞrR

E
; ð35cÞ

where rc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2c2=6h2ð1� v2Þ3

p
and

ry2 ¼
1

3
rc2

rR

rc2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
27þ 2

rR

rc2

� �3

þ 3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 4

rR

rc2

� �3
s2

4
3
53

vuuut
0
B@

þ ðrR=rc2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2

�
27þ 2ðrR=rc2Þ3 þ 3

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27þ 4ðrR=rc2Þ3
�r

3

s
1
CCCCA:
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Substituting Eqs. (35a, b, and c) into Eq. (34c), the total potential
energy per unit length for region 2 is

p2 ¼
ð1� n2Þhc

2E
r2

y2 � ðrRÞ2
h i

� 2q2c3

3hry2
: ð35dÞ

For region 1, the membrane stress in y direction is given by

ry1 ¼
1

3
rc1

rR

rc1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
27þ 2

rR

rc1

� �3

þ 3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 4

rR

rc1

� �3
s2

4
3
53

vuuut
0
B@

þ ðrR=rc1Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2

�
27þ 2ðrR=rc1Þ3 þ 3

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27þ 4ðrR=rc1Þ3
�r

3

s
1
CCCCA; ð36aÞ

where

rc1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2

6h2ð1� v2Þ
c� b

2

� �2
3

s
: ð36bÞ

In our case, b ¼ c=8, and then Eq. (35b) becomes

rc1 ¼
ffiffiffiffiffiffiffiffi
49

256

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2c2

6h2ð1� v2Þ
3

s
¼

ffiffiffiffiffiffiffiffi
49

256

3

r
rc2: ð36cÞ

By substituting Eq. (36c) into Eq. (36a), the membrane stress in
region 1 becomes

ry1 ¼
1

3

ffiffiffiffiffiffiffiffi
49

256

3

r

�rc2

ffiffiffiffiffiffiffiffi
256

49

3

r
rR

rc2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
27þ512

49

rR

rc2

� �3

þ3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ1024

49

rR

rc2

� �3
s2

4
3
53

vuuut
0
B@

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð256=493

p
Þ2ðrR=rc2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2
�

27þ512=49ðrR=rc2Þ3þ3
ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27þ1024=49ðrR=rc2Þ3
�r

3

s
1
CCCCA:

ð36dÞ
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Finally the deflection and in-plane strain for region 1 are obtained
from

w¼ 49qc2

512hry1
1�256

49

y

c

� �2
� �

; ð36eÞ

eM
y ¼

1� n2

E
ðry1�rRÞ; ð36fÞ

and

eR ¼ ð1� nÞrR

E
: ð36gÞ

Substituting Eqs. (36e, f and g) into Eq. (34c) yields the total
potential energy per unit length for region 1:

p1 ¼
7ð1� n2Þhc

32E
r2

y1�ðrRÞ2
h i

� 343q2c3

6144hry1
: ð36hÞ

By substituting Eqs. (35d) and (36h) into Eq. (31), the energy
release rate is obtained from

G¼ 1

2b
ð2p1�p2Þ ¼

8

3ry2
� 343

768ry1

� �
q2c2

h

þ
7r2

y1

4
�2r2

y2

 !
þ1

4
ðrRÞ2

" #
ð1� n2Þh

E
: ð37Þ

Figure 10b shows the effect of the equi-biaxial residual stress on the
energy release rate under the assumption of a constant pressure. The
quantities G0 and r0 are, respectively, the energy release rate and
stress in the blister film in the absence of the residual stresses. It is
clear (Figure 10b) that the energy release rate depends strongly on
the residual stress state. If compressive residual stresses are present,
the energy release rate is underestimated if they are neglected, and
vice versa for tensile residual stresses. When the residual stress is of
the same order as the stress resulting from the uniform pressure,
the energy release rate is overestimated by 40%. From the point of
view of an energy balance, the pressure drives the delamination as
well as overcoming the residual stresses. In other words, for the same
interface, the critical pressure for initiating debonding with tensile
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residual stresses will be higher than that without any residual stres-
ses. In reality, there are very few film–substrate systems without
residual stresses. As a result, when the energy release rate needs to
be determined, the residual stresses also need to be considered.

4. RESULTS AND DISCUSSION

In this section, the results from the experimental and analytical pro-
cedures that were developed in the forgoing sections are presented
and compared. First, the blister shape for the analytical solution
and a finite element analysis were checked against the measurements.
The energy release rate was then determined based on the analytical
solution and compared with energy release rate solutions from other
sources. The mechanical properties and dimensions of the specimen
are summarized in Table 2.

4.1. Blister Shape

The shape of the blistered film played a key role in determining the
energy release rate. The foregoing analytical solution, which has a
limited number of degrees of freedom, was checked against both
experimental data and the solution of a finite element analysis. A
finite element model consisting of 1500 S4 elements was developed
using ABAQUS.2 This element type is a four-node doubly curved, gen-
eral purpose, finite-membrane-strain shell element, which has four
integration points [49] and can be used effectively where in-plane
bending is expected.

Figure 12 compares the deflected shape in the yz and xz planes from
the bulge test with the results from the analytical and finite element

2The authors acknowledge the use of the finite element package ABAQUS
1

under
academic license.

TABLE 2 Dimensions and Properties of the Specimen

Property Value

2c 10.16 mm
2b 1.27 mm
l0=2c 1.5
h 127mm
E 1.78 GPa
n 0.30
rR 5.70 MPa
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analyses. As was mentioned earlier, the residual stresses had about a
10% effect on the central deflection. In the yz plane, the shape of the
membrane was the same for both the analyses (Figure 12a). There was

FIGURE 12 Membrane shape in (a) the yz plane and in (b) the xz plane for a
pressure of 121.9 kPa in a specimen with Hysol EA 9696 bonded to Al 6061-T6.
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a slight difference between the measurements and the analyses for
x=c � 0:8, where there is probably a boundary layer effect [50,51].
The deflections from the analyses did differ by as much as 2% in the
xz plane. This was because in the analytical solution, a limited number
of terms was used to represent the deflection in the x direction, making
it slightly stiffer than the finite element result. The difference between
the measurements and finite analysis in the region x=a�0:7
(Figure 12b) was more noticeable than in Figure 12a.

The deflection during delamination was obtained by taking a profile
(Figure 13) of the shadow moiré fringes along the centerline of the pen-
insula. This procedure traced the deflected shapes of the peninsula
blister in region 2 as the delamination advanced and corresponds to
the pressure and debond histories that are shown in Figure 5. When
the delamination length was such that l=2c�1:7 ðt�1320sÞ, the
maximum deflection of the blister appeared to remain constant. How-
ever, if the fringe data had been interpolated, it is likely that the cen-
tral displacements increased with crack length and time as indicated
by the analysis. It is interesting to note that the measured deflections
were again consistently lower than the values obtained from the ana-
lytical solution in the region near the delamination front. The pressure

FIGURE 13 Comparison of measured crack profiles with solutions from the
approximate analysis in a specimen with Hysol EA 9696 bonded to Al 6061-T6.
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levels in the peninsula blister specimen were lower than those that
were applied in the bulge test with the result that the boundary layer
would be more extensive.

4.2. Interfacial Toughness

The energy release rates determined from the plane strain analysis,
the analytical solution based on the minimization of energy, and the
finite element analysis of the blister specimen are shown in Table 3.
These values were obtained for the steady state delamination pressure
of 86:6� 1% kPa with rR ¼ 0 or rR ¼ 5:70 MPa. The values in the
plane strain column were determined using Eqs. (32) and (37), respect-
ively. The values in the analytical column were determined by
assuming that region 2 is a finite membrane. Recall that the plane
strain assumption was valid if l=2c�1:5. The third column gives the
results from the finite element analysis where the difference in poten-
tial energy at two different crack lengths was divided by the change in
crack surface area. These values were all compared with Dillard and
Bao’s results [34] based on a membrane assumption that the deflection
was a circular arc. Because the maximum deflection was considerably
smaller than the width of the specimen, the circular arc turned out to
be a good approximation of the true deflected shape. As a result, the
values of the energy release rate were quite similar at zero residual
stress. However, an examination of the results in the row correspond-
ing to rR ¼ 5:70 MPa indicates that the assumption [34] that the
residual stresses were dominant was not reasonable. First, the stress
level due to pressurization was about 15 MPa, three times as large as
the residual stress. Second, a tensile residual stress should decrease
rather than increase the energy release rate ([47] and Figure 10b).
This discrepancy is due to the manner in which the membrane stress
was handled in Ref. [34]. The reason for the 5 J=m2 difference between
the plane strain and analytical energy release rate values was due to

TABLE 3 Comparison of the Interfacial Toughness Values (J=m2) for Hysol
EA 9696=Alumimum 6069-T6

Residual stress
(MPa)

Plane strain
(J=m2)

Analytical
(J=m2)

Finite element
(J=m2)

Dillard & Bao
(J=m2)

0 137 134 135 139
5.70 113 108 107 297

Note. Toughness values are given to within �2%.
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the fact that the analytical solution includes a biaxial rather than uni-
axial residual stress state. The levels of toughness encountered here
are about one third of the values obtained by Moidu et al. [52] in a peel
test of Hysol EA 9346 from aluminum that had yet to be exposed to
water. This difference may be due to the fact that the plastic dissi-
pation in the peninsula blister test is minimized. It was shown in a
cohesive zone analysis that accounted for the elasto-plastic behavior
of the film [39] that the amount of plastic dissipation was limited to
a small region of the vicinity of the crack front, and was 6% of the
adhesive fracture energy. The lower values were unlikely to be due
to the presence of the pressurizing fluid, which was in contact with
the bond for only 2 h, which is insufficient for significant diffusion.

5. CONCLUSIONS

A stress and fracture analysis of the peninsula blister test has been
presented. The analysis accounted for large deformations of the blis-
tering film and residual stresses in it. An analytical solution based
on a fully clamped rectangular membrane and the minimum potential
energy method was developed to predict the deflection in each inflated
region of the specimen. A finite element solution was also developed,
mainly for validation purposes. There was good agreement between
both the analytical and finite element solutions and the measured blis-
ter shape.

Relatively simple expressions for the energy release rate were
developed for cracks that were longer than 1.5 times the specimen
width. Under this condition, the energy release rate is independent
of crack length. In the absence of residual stresses, users are referred
to Eq. (31) for the energy release rate. On the other hand, when
residual stresses are important, Eq. (37) combined with appropriate
elements of Eqs. (35) and (36) should be used. Toughness values
obtained from these expressions should be very close to the intrinsic
toughness of the interface because of the relatively small amounts of
plastic dissipation that occur in this specimen.

An attractive feature of the peninsula blister test is that it can be
turned into a bulge test following complete delamination along the
peninsula. This allows the Young’s modulus of, and the residual stres-
ses in, the delaminated film to be determined from the pressure–
volume response. For the Hysol EA 9696 film adhesive that was used
in this study, the Young’s modulus and residual stresses were 1.78
GPa and 5.7 MPa, respectively.

The peninsula blister tests that were conducted in the current study
produced steady-state crack growth, and debonding took place at a
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constant pressure with a minimal amount of plastic dissipation. The
toughness of the Hysol EA 9696=aluminum interface, accounting for
residual stresses, was 108� 2 J=m2.

Thus, the peninsula blister configuration is very suitable for mea-
suring the adhesive fracture energy of thin films. The effect of aggress-
ive environments or solvents can easily be incorporated in a contained
and convenient manner when they are used as the pressurizing fluid.
For specimens with brittle films and=or interfaces with very high
toughness values, the film may burst, but this problem can easily be
rectified by reinforcing the film with a suitable coating.

APPENDIX A: THE PLANE STRAIN DEFLECTION
OF A THIN MEMBRANE

Considering the large deflection of a plate with a bending stiffness, D,
the equilibrium equation can be expressed [43] in terms of the deflec-
tion, w, and the forces per unit length, Nx, Ny, Nxy, as

Dr4w ¼ qþNx
@2w

@2x
þNy

@2w

@2y
þ 2Nxy

@2w

@x@y
: ðA1Þ

If the deflection is much greater than the plate thickness, h, a thin
membrane can be assumed, making D ¼ 0. In addition, if the
membrane is infinitely long in the x direction, plane strain applies,
and (A1) can be simplified to

@2w

@2y
¼ � q

Ny
¼ � q

hry
: ðA2Þ

In addition, dry=dy ¼ 0, w ¼ f ðyÞ, and the in-plane y displacement,
v, is

v ¼ gðyÞ: ðA3Þ

The boundary conditions are

wð�cÞ ¼ 0; ðA4aÞ

w0ð0Þ ¼ 0; ðA4bÞ

vð�cÞ ¼ 0 ðA4cÞ

and

vð0Þ ¼ 0: ðA4dÞ
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The strain displacement equation is

ey ¼
dv

dy
þ 1

2

� @w

@y

�2
: ðA5Þ

The linearly elastic and isotropic membrane has the stress-strain
behavior

ry ¼
E

1� n2
ey: ðA6Þ

Noting that ry is constant (but unknown) and integrating Eq. (A2)
with boundary conditions (A4a) and (A4b) yields the deflection

w ¼ q

2hry
ðc2 � y2Þ: ðA7Þ

Substituting Eq. (A7) into Eq. (A5) and integrating subject to
Eq. (A4d) gives the displacement

v ¼ 1� n2

E
ryy�

1

6

q2y3

ðhryÞ2
: ðA8Þ

Finally, the boundary condition (A4c) gives us the membrane stress

ry ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq2c2

6h2ð1� n2Þ
3

s
: ðA9Þ

The expression for the stress can now be substituted into Eq. (A7) for
the deflection, so that

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6qð1� n2Þ

8hEc2

3

r
ðc2 � y2Þ: ðA10Þ

Similarly, by substituting the stress into Eq. (A8), we obtain the
displacement

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þ2q2c2

6h2E2

3

s
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þ2q2

6h2E2c4

3

s
y3: ðA11Þ

Substituting the stress into Eq. (A6) yields the strain

ey ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þ2q2c2

6h2E2

3

s
: ðA12Þ
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APPENDIX B: THE DEFLECTION OF A THIN MEMBRANE
WITH RESIDUAL STRESS

The in-plane displacement and deflection are measured from the
beginning of pressurization rather than from the initial state. Thus
Eqs. (A5) and (A6) become

ey ¼
dv

dy
þ 1

2

@w

@y

� �2

¼ 1� n2

E
ðry � rRÞ; ðB1Þ

where rR is the equibiaxial residual stress.
Equation (A8) becomes

v ¼ 1� n2

E
ðry � rRÞy� 1

6

q2y3

ðhryÞ2
; ðB2Þ

and enforcing (A4c) now yields

r3
y � rRr2

y ¼
Eq2c2

6h2ð1� v2Þ ¼ A; ðB3Þ

whose solution is

ry ¼
1

3

 
rR þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ð27Aþ 2rR3 þ 3

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27A2 þ 4ArR3
p

Þ3

q
:

þ rR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ð27Aþ 2rR3 þ 3

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27A2 þ 4ArR3
p

Þ3

q
!
: ðB4Þ

Substituting the stress into Eqs. (A7), (B2), and (B1) gives the deflec-
tion, in-plane displacement, and strain with the residual stress effect.
In particular, we see that the central deflection is

w0 ¼
qc2

2hry
; ðB5Þ

and the pressure-central deflection response is then

q ¼ 2hrR

c2
w0 þ

8Eh

6c4ð1� n2Þw
3
0: ðB6Þ
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